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The algorithm used for reconstruction or resolution enhancement is one of the factors a®ecting
the quality of super-resolution images obtained by °uorescence microscopy. Deep-learning-based
algorithms have achieved state-of-the-art performance in super-resolution °uorescence micros-
copy and are becoming increasingly attractive. We ¯rstly introduce commonly-used deep learning
models, and then review the latest applications in terms of the network architectures, the training
data and the loss functions. Additionally, we discuss the challenges and limits when using deep
learning to analyze the °uorescence microscopic data, and suggest ways to improve the reliability
and robustness of deep learning applications.
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1. Introduction

Recent developments of super-resolution °uores-
cence microscopy allow researchers to overcome the
Abbe di®raction limit,1 and it has been considered a
promising technique to bring \optical microscopy
into the nanodimension". The great improvement in
spatial resolution immediately opens the door to a

variety of discoveries at the nanoscale.2 As an in-
tegral member of super-resolution microscopy
methods, stimulated emission depletion (STED)
microscopy3 employs a second laser beam that has a
doughnut-shaped focal intensity distribution with
zero intensity at the center, and its overlap with the
excitation laser beam results in a smaller residual
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°uorescence spot, thereby sharpening the point
spread function (PSF) and improving resolution.4

Single-molecule localization microscopy (SMLM),
including stochastic optical reconstruction micros-
copy (STORM)5 and °uorescence photo-activated
localization microscopy (PALM),6 ¯rst labels spe-
ci¯c proteins or oligonucleotides with a °uorophore
or an auto°uorescent protein to light up those
molecules of interest,7 and then constructs super-
resolution image by localizing and merging the
positions of molecules.8 Structured illumination
microscopy (SIM)9,10 surpasses the optical di®rac-
tion limit twofold by applying varying, nonuniform
illumination on samples and using dedicated
computational algorithms to derive super-resolution
information from sequentially acquired images.11

However, intense illumination and multiple
acquisitions are required to produce a single super-
resolution image. Computation is thus becoming
increasingly crucial for the imaging process,12 since
it decides what information should pass through the
optical system. For instance, computational algo-
rithm is applied to improve the resolution of dif-
fraction-limited confocal microscopy images to
match the resolution acquired with STED micro-
scope, reducing the dependence on relatively so-
phisticated optical setups.13 In the case of STORM,
several algorithms have been developed to cater for
localizing closely spaced molecules, which can
improve temporal resolution by increasing the
density of activated °uorophores in each raw image
and requiring fewer raw images.14 Reference 15 uses
e±cient algorithm to obtain a ¯ve-fold reduction in
the number of raw images required for super-reso-
lution SIM, and generate images under low light
and short exposure time conditions, thereby reduc-
ing photobleaching. While successful application of
conventional algorithms has been demonstrated,
most of them su®er from two fundamental draw-
backs: undesirably long data-processing time and
insu±cient image quality. Hence, any substantial
improvements in the algorithms used for resolution
enhancement or reconstruction are desired to de-
crease photobleaching and increase resolution.

Deep learning, as a data-driven approach, has
been applied successfully to image processing in a
variety of research ¯elds, including image classi¯-
cation,16 segmentation,17,18 computed tomogra-
phy,19 optical microscopy20 and other areas.21–24

Deep learning is a class of machine learning tech-
nique, which has more complex ways of connecting

layers and larger amount of computing power in
training than previous networks. Another remark-
able advantage that deep learning has over con-
ventional machine learning algorithms is automatic
feature extraction.25,26 More importantly, deep
neural networks can learn end-to-end image trans-
formations, which is di®erent from classical opti-
mization approaches that need explicit analytical
modeling and prior knowledge. All these advances
drive deep learning closer to its original goal of ar-
ti¯cial intelligence (AI), bringing about signi¯cant
breakthroughs in solving biomedical problems.
Super-resolution °uorescence microscopy, too, has
recently bene¯ted from deep learning to improve
resolution or to reconstruct high-resolution images.
Despite the limited amount of published research,
these studies demonstrate in¯nite possibilities of
deep learning in super-resolution microscopy.

This review paper aims to give an overview of the
applications of deep learning in super-resolution
°uorescence microscopy. In Sec. 2, the deep learning
architectures proposed in previous publications for
processing °uorescence microscopic images are pre-
sented. Section 3 compares and analyzes the appli-
cation of these models. Section 4 discusses the
current challenges and potential methods for over-
coming these challenges. Lastly, an overall sum-
mary is given in Sec. 5.

2. Deep Learning Models

This section introduces convolutional neural net-
work (CNN) and generative adversarial network
(GAN) that are commonly employed to analyze
°uorescence microscopic data, due to their superb
performance in image reconstruction and resolution
enhancement.

2.1. Convolutional neural network

A convolution is de¯ned as a mathematical opera-
tion describing how to merge two sets of informa-
tion.25 As its name implies, CNN generates a feature
map by convolving the input data with trainable
kernels or weights.27 Convolution layers and pooling
layers are two typical processing layers in CNN.

At one position, the convolution layer ¯rst
computes the matrix dot product between the input
image and the convolution kernel, and then sums all
the values to obtain the value at the corresponding
entry of the output feature map. The convolution
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kernel is applied in a sliding window manner
according to the stride size, and the orientation is
generally from top to bottom and from left to right.
The convolution operation is considered complete
when the convolution kernel is slid across the entire
input data. The convolution layer is followed by an
activation function, such as the recti¯ed linear units
(ReLU),28 which is important in CNN and intro-
duces a nonlinearity to the model. The properties of
the feature map are related to the user-de¯ned
hyperparameters, like convolution kernel size,
depth, stride size and zero padding.

Pooling layers are inserted between successive
convolution layers to reduce the spatial dimension
of the feature representation and to prevent over-
¯tting.25 Max pooling and average pooling perform
down-sampling operation by taking respectively the
maximal element and the average value in the cor-
responding 2� 2 region and discarding redundant
information. This is bene¯cial for the neural net-
work,29 since pooling layers reduce the parameter
numbers and improve computational e±ciency.
Both kinds of pooling can help to make the repre-
sentation approximately invariant to small trans-
lations of the input.30 This invariance to local
translation is useful, especially if we are more in-
terested in whether some features are present than
where they are.30

Unlike fully connected neural network, CNN
utilizes two important properties including local
connectivity and parameter sharing. The former is
inspired by the biological visual system. Neurons in
a convolution layer are only connected to a local
region of the previous layers along the spatial
dimensions, and the hyperparameter called the

receptive ¯eld that controls how much of the width
and height to be a®ected. Local connectivity allows
us to extract features while reducing the parameter
count per layer we need to train.25 Parameter
sharing is another scheme to control the total
number of parameters by sharing weights for all
neurons in a two-dimensional slice of depth.
Figure 1 compares full connections and local con-
nections with parameter sharing. Every connection
between the input unit (xi) and output unit (yi) in
Fig. 1(a) has its own weight, speci¯ed by di®erent
weight wi, and there is no parameter sharing. In
contrast, Fig. 1(b) uses the same three weights
(with di®erent colors for distinction of w1 � w3)
repeatedly across the entire input. It is clear that
local connectivity with parameter sharing can sig-
ni¯cantly decrease the complexity of the model, and
the number of weights is reduced from 25 to 3 in
Fig. 1, thereby improving the computational e±-
ciency of the network.

In general, back-propagation is performed to
train CNN,29and the gradient-based optimization
algorithms, such as stochastic gradient descent
(SGD)31 and the adaptive moment estimation
(Adam) optimizer32 are employed to update the
weights by minimizing the loss function. CNNs have
been developed in °uorescence microscopy for
super-resolution image reconstruction. These
applications are further discussed in Sec. 3.

2.2. Generative adversarial network

Generative adversarial network (GAN) has attrac-
ted extensive attention since it was proposed by Ian
Goodfellow in 2014.33 GAN can be divided into two

(a) (b)

Fig. 1. Comparison of (a) full connections and (b) local connections. Each output unit yi is obtained by connecting di®erent input
units xi with corresponding weight wi. Arrows labeled with wi indicate the connections that are associated with a particular weight
parameter. (a) Full connections have no parameter sharing so each weight is used only once. (b) Local connections use the weights
repeatedly at all input locations due to parameter sharing.
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parts, a generator and a discriminator. Figure 2
gives an illustration of the generative adversarial
network and its training process, which is applied to
enhance the image resolution. The generator is re-
sponsible for generating images from the input data
while the discriminator estimates the probability of
the generated output image being real. The goal
here is to generate more reliable output images
based on the training data, so that the discrimina-
tor cannot distinguish the images from the training
set or from the generator.

GAN enables the generator and discriminator to
compete with each other till they reach an equilibri-
um point. During the training, GAN works by al-
ternating between training the generative model
given the discriminative model, and updating the
discriminator by keeping the generator unchanged.
This adversarial training is achieved by optimizing
the loss function with back-propagation technique.
GAN training su®ers from model collapse and gra-
dient vanishing. One common failure mode involves
the generator collapsing to produce a single sample or
only a few similar samples of the true distribution.34

Additionally, the more quickly the discriminator
learns to distinguish between real and fake images,
the less reliable gradient information is provided to
the generator. This results in vanishing gradient.35

Several algorithmshave been proposed to address the
above issues and to improve the stability of learn-
ing.36–38 Generative adversarial networks are poten-
tially used for °uorescence microscopy due to their
capability of enhancing image resolution, and their
applications are elaborated in Sec. 3.

3. Deep Learning for Super-Resolution
Fluorescence Microscopy

In the past few years, super-resolution °uorescence
microscopy has experienced a rapid development. In
particular, deep learning algorithms have shown
promising results ranging from image reconstruc-
tion to image resolution enhancement. Deep learn-
ing is able to learn from data, and the design
of proper network architecture, training data and
loss function are crucial for its applications.
Accordingly, this section introduces these three
aspects of applications of deep learning to
super-resolution images.

3.1. Stimulated emission depletion

microscopy

The underlying principle of STED is selective de-
activation of °uorophores by stimulated emission
depletion to sharpen the point spread function.
Deep learning methods can be applied to achieve
image transformation between di®erent imaging
modalities and resolution enhancement.

Wang et al. present a deep-learning-based
framework to achieve super-resolution and cross-
modality image transformations in °uorescence
microscopy.13 They transform di®raction-limited
confocal microscopy images to match the resolution
acquired with STED microscope. Although this
work does not provide demonstration of its capa-
bility to directly super-resolving live-cell confocal
images, it shows potential that the deep learning

Pixel-wise loss
Adversarial loss

Discriminator loss
Total loss function

Generator Discriminator

Input low-resolution image Output high-resolution image

+ =

Input ground-truth

Input ground-truth

Fig. 2. Illustration of a generative adversarial network and its training process. The generator enhances the input low-resolution
image, and the discriminator returns an adversarial loss to the output high-resolution image. The loss function can be designed as
the combination of the adversarial loss with regularization terms.
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method is able to infer super-resolved live-cell ima-
ges by training the model with only the static
images. This can e®ectively overcome the con-
straints of photobleaching and phototoxicity on the
practical long-term live-cell imaging with STED.

The network architecture used in this work is a
conditional GAN model that has been proven to be
quite e®ective in learning such transformation,
where the input and output distributions share a
high degree of mutual information.39 The generator
is a CNN structure similar to the U-net, and the
discriminator is also a simple CNN architecture. U-
net has been applied successfully to suppress irrel-
evant regions while highlighting salient structures
of varying shapes, yielding improved prediction
performance across diverse datasets.40

The loss function LðG;DÞ of the generator is
designed as the combination of the adversarial loss
with the mean square error (MSE) and the struc-
tural similarity (SSIM), simultaneously ensuring
prediction accuracy and perceptual quality ¯delity.
The loss function LðD;GÞ of the discriminator cal-
culates the binary cross-entropy (BCE). They are
formulated as

LðG;DÞ ¼ �logDðGðxÞÞ þ ��MSEðGðxÞ; yÞ
� � � log½ð1þ SSIMðGðxÞ; yÞÞ=2�

and LðD;GÞ ¼ �logDðyÞ � log½1�DðGðxÞÞ�;
ð1Þ

in which x is the low-resolution input, GðxÞ is the
generator output, DðyÞ is the discriminator predic-
tion of the network output or ground truth, and y is
the high-resolution image used as ground truth.

For the training data, since corresponding con-
focal image and STED image pairs are used to train
the model, accurate registration and alignment are
necessary and crucial as a pre-process step. This can
reduce possible artifacts. It is also noticed that the
network model should be retrained for optimal
results when applying the approach to new types of
samples unseen in the training stages. Therefore,
the authors employ the transfer learning,41 which
uses a previously trained network for another type
of sample as the initial model, and speeds up the
convergence of the learning process for new sample.
The ¯nal model is selected with the smallest vali-
dation loss, which takes �90 h to train. After
transfer learning, it takes �24 h to train the model
with 8 patches (256� 256 pixels).

3.2. Single-molecule localization
microscopy

The basic principle of SMLM is the localization of
sparsely distributed °uorescent proteins/°uor-
ophores over thousands of frames. Computational
image reconstruction algorithms are required to de-
tect precisely the position of the individual molecule.

3.2.1. Stochastic optical reconstruction
microscopy

Nehme et al. present a deep convolutional neural
network used for localization microscopy (Deep-
STORM).42 It not only achieves state-of-the-art
resolution under di®erent signal-to-noise ratio
(SNR) conditions and high molecule densities, but
also shows signi¯cantly higher speed than existing
approaches. Because STORM generally requires
thousands of frames of raw images to reconstruct a
super-resolution image, long acquisition time and
time-consuming reconstruction algorithm have be-
come a bottleneck that limits the wide adoption of
STORM for live-cell imaging.14 As a consequence,
fast and accurate reconstruction algorithms are
desired for STORM. Deep-STORM pioneers in ap-
plying deep learning to reconstruct STORM data,
demonstrating its feasibility and reliability.

The network architecture is based on a fully
convolutional encoder–decoder network. The input
image is ¯rstly encoded into a dense and aggregated
feature representation, and then reconstructed to a
super-resolved image in the decoding stage. Both
parts are constructed using CNN. Batch normali-
zation (BN) is inserted between the convolutional
layer and ReLU activation function to alleviate the
internal covariate shift and to facilitate the training
process.43

The loss function Lðx; x̂Þ consists of a data-
¯delity term and one regularization term. For the
former, this work measures the squared l2 norm of
the di®erence between the network's prediction x̂i

and the desired ground-truth image xi convolved
with a small 2D Gaussian kernel g. Here, the regu-
larization term is taken to control sparsity by pe-
nalizing the l1 norm of the network's output x̂i.
Assuming that the number of images in the training
set is N, the loss function can be described as

Lðxi; x̂iÞ ¼
1

N

XN
i¼1

jjx̂i � g� xi � gjj22 þ jjx̂i jj1: ð2Þ
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The training data are pairs of di®raction-limited
images and super-resolved images with spikes at
corresponding ground truth positions. Deep-
STORM can be trained on simulated data or
experimental data, and the simulated training
examples can be generated by ImagJ44 Thunder-
STORM45 plugin. To achieve the best reconstruc-
tion results, it is important to note that the
parameters of the simulated training data should in
principle be matched to the experimental conditions
as close as possible, including the pixel size, the
range of full width at half maximum (FWHM) of
the point spread function (PSF), intensity range of
the molecules and others. One prominent advantage
of using simulated training data is that the amount
and the quality of the data and their suitability are
su±cient. The problem of using simulated training
data will be further explored in Sec. 4. Full network
training takes �2 h with 7K pairs of training data-
set (208� 208 pixels).

In another application of deep learning to re-
construct STORM data, Yao et al. focus on devel-
oping a reconstruction algorithm suited for high-
density molecule localization and live-cell STORM
imaging.8 This work designs a two-part deep CNN
architecture which is named deep residual learning
(DRL-STORM). A residual layer is added to con-
nect two parts and to reduce noise. The ¯rst part of
the architecture aims to identify redundant infor-
mation including noise which is then separated from
the original raw image by the residual layer. This
facilitates molecules localization in the second part

of the network. The comparison of two-part archi-
tecture (DRL-STORM) and single-part architec-
ture (Deep-STORM) is illustrated in Fig. 3.
Di®erent types of blocks in the architectures are
highlighted with di®erent colors for distinction. The
width of each block is the number of ¯lters in the
corresponding convolutional layer. The bene¯ts of
using two-part are introducing more parameters,
and exploring larger computing power of deep
learning from both depth and width, while single-
part network cannot.8 The loss function and train-
ing data are similar to those of Deep-STORM, and
DRL-STORM spends typically �1 h in the whole
training process.

3.2.2. Fluorescence photo-activated
localization microscopy

Ouyang et al. present an arti¯cial neural network
accelerated PALM (ANNA-PALM), a computa-
tional strategy based on deep learning, that recon-
structs high-quality, super-resolution images from
sparse and far fewer frames of images (two orders of
magnitude less) than usually needed.22 Using a small
number of frames, this method can improve the
temporal resolution without increasing phototoxici-
ty and photobleaching, and preserves high spatial
resolution by taking advantage of sparse PALM
images as input. The reduction in acquisition time
and the improvement in imaging e±ciency demon-
strate that deep learning can help to achieve faster
and high-throughput super-resolution imaging.

  32 64 128 512 128 64  32

Reconstruction 
Result

Raw
Image

Conv + BN + ReLU Max Pooling Up-sampling

(a)

Fig. 3. Comparison of (a) single-part network architecture of Deep-STORM42 and (b) two-part network architecture of DRL-
STORM.8 The number below each block refers to the number of features in the representation. Di®erent colors are used to distinct
various types of block. (a) The single-part network of Deep-STORM encodes the input raw STORM images and reconstructs super-
resolution image in the decoding stage. (b) Two parts of DRL-STORM are connected by a residual layer, which reduces the noise
(top part) and localizes high-density molecules (bottom part).
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The network architecture of ANNA-PALM is a
special conditional GAN, consisting of three distinct
neural networks. The generator builds on the U-net
architecture and produces the reconstructed super-
resolution image. The discriminator is a ¯ve-layer
CNN and provides the adversarial loss. Besides,
ANNA-PALM introduces an additional low-reso-
lution estimator that is a four-layer CNN and cal-
culates the low-resolution error map. Dropout
layers are employed in the central layers of the
generator to prevent the network over¯tting.46

There are three distinct loss functions, and each
of them is associated to a network. The loss func-
tion of the generator penalizes the di®erence be-
tween the generator output and the target image.
The di®erence is de¯ned as a weighted average of
the multiscale structural similarity index (MS-
SSIM)47 and the l1 norm smoothed by a Gaussian
kernel. The loss function of the low-resolution es-
timator measures the consistency between the low-
resolution images produced from the generator and
the observed wide¯eld images. This is used to es-
timate the degree of reliability and highlight po-
tential reconstruction artifacts.22 The loss function
of the discriminator is a conditional GAN discrim-
inator loss.

The training data of ANNA-PALM are obtained
from standard localization microscopy data. It is
worth noting that ANNA-PALM does not necessi-
tate large amounts of training data, but only
requires 10 ¯elds of view (FoVs) (of 55�m� 55�m
each) or even a single FoV of experimental PALM
images for training.22 This is accomplished with
extensive data augmentation. Unlike Deep-STORM
that uses random distributions of molecules as the
training data, ANNA-PALM requires the training
data with structures similar to those in the images
to be reconstructed. Otherwise, the reconstructed
results contain errors. Even when applied to data
similar to the training images, ANNA-PALM
sometimes may produce artifacts. The issue of de-
ceptive artifacts will be further discussed and ana-
lyzed in Sec. 4. Training ANNA-PALM from
scratch takes on the order of hours to days with a
batch size of 1, but retraining can be done in 1h or
less when starting from previously trained model.

3.3. Structured illumination microscopy

The fundamental principle of SIM is the computa-
tional synthesis of images acquired by shifted illu-
mination patterns. Reconstruction algorithms

Raw
Image

Temporary 
Result

  35 70 140 563 563 140 70  35

Conv + BN + ReLUResidual
Max Pooling 

Up-sampling

  35 70 140 563 563 140 70  35

Conv + BN

Reconstruction 
Result

(b)

Fig. 3. (Continued)
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based on deep learning can be applied to boost
SIM's performance under low-intensity, distorted
illumination patterns or challenging SNR
conditions.

Qiao et al. present a deep Fourier channel at-
tention network (DFCAN) and its derivative
trained with GAN (DFGAN). They can achieve
robust reconstruction of SIM images under low SNR
conditions and ¯nd widespread applications in live-
cell imaging over a longer time.48 This suggests that
well-designed deep learning models are helpful for
SIM in obtaining high-quality super-resolution
images, while traditional computational recon-
struction is prone to introduce artifacts to the
super-resolved images at low °uorescence level.
Moreover, this work also provides a comprehensive
benchmark for evaluating the ¯delity and quan-
ti¯ability of deep-learning-based super-resolution
models, which is important for applying deep
learning to enhance the resolution of microscopy
images.

The architecture of DFGAN is constructed based
on the conditional GAN framework where the
DFCAN acts as the generator, and its discriminator
is a typical CNN architecture of 12 convolutional
layers. DFCAN makes use of the frequency content
di®erence across distinct features in the Fourier
domain, rather than structural di®erences in the
spatial domain, enabling the network model to learn
the hierarchical representations of high-frequency
more precisely and e±ciently.48 Fourier channel
attention block (FCAB) in each residual group of
DFCAN is devised to extract high frequency
features.

The loss function LDFCAN ð~Y ;Y Þ of DFCAN is
de¯ned as a combination of MSE loss and SSIM loss
balanced by a scalar weight �, given by

LDFCANð~Y ;Y Þ ¼ 1

w� h

Xw�h

i¼1

ð~Y i � YiÞ2

þ �½1� SSIMð~Y ;Y Þ�; ð3Þ
where ~Y and Y represent the output of DFCAN and
the corresponding ground truth, respectively, and
their pixel size is denoted as ðw� hÞ.

The loss function LGjDðX;Y Þ of the generator of
DFGAN is therefore the sum of LDFCANðGðXÞ;Y Þ
and discriminative error LDðXÞ, i.e.,
LGjDðX;Y Þ ¼ �½LDFCANðGðXÞ;Y Þ � � logðDðGðxÞÞÞ�;

ð4Þ

in which � and � are parameters for the tradeo®
between the corresponding terms. The loss function
of the discriminator of DFGAN is the binary cross-
entropy.

The training data are super-resolution and low-
resolution image pairs. The former is the recon-
structed superior quality SIM image, while the latter
is a corresponding wide-¯eld image obtained by av-
eraging raw SIM images. As a result, the training
image pairs are well matched and there is no need for
registration.48 The authors capture raw SIM images
with multimodality SIM systems, and provide an
open-access experimental dataset (BioSR) covering
wide ranges of SNR levels and biological structural
complexities, di®erent levels of excitation light in-
tensity and upscaling factors. Transfer learning has
also been employed to facilitate the application of
DFCAN and DFGAN to more types of biological
structures with a fast training process. The ¯nal
model of DFGAN takes about 80 h to train.

In another application of deep learning to recon-
struct SIM data, Jin et al. develop an e±cient deep
learning-assisted SIM (DL-SIM) reconstruction al-
gorithm that needs fewer frames of raw SIM images
and works under low light conditions, thus increas-
ing acquisition speed and reducing photobleach-
ing.15 The authors ¯rst employ U-net architecture to
achieve comparable resolution with only 3 images (9
or 15 images for conventional SIM), and then con-
nect two U-nets through skip-layer connection to
improve reconstruction performance under low laser
power and short exposure time. DL-SIM is trained
by taking real SIM raw images as the input and
corresponding conventional SIM reconstruction
results as the ground truth. It takes 2–3 days (�2000
epochs) to train the network with �1000 training
samples to get a working model for each structure.
After transfer learning, the model trained with 200
epochs can produce comparable results. The loss
function calculates the pixelwise accuracy without
other regularization terms, as follows:

loss ¼ 1

W �H
�

XW
i¼1

XH
j¼1

ðUði; jÞ � V ði; jÞÞ þ 5

 

�
XW
i¼1

XH
j¼1

ðUði; jÞ � V ði; jÞÞ2
!
; ð5Þ

where U and V denotes the ground truth image (of
width W and height H) and the network output,
respectively.
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3.4. Three-dimensional (3D)
super-resolution microscopy

Since most biological samples are three-dimension-
al, it is necessary to develop 3D image processing
algorithms for analyzing °uorescence microscopic
data. There has been research applying deep
learning to achieve 3D super-resolution imaging of
°uorescent samples,49,50 and the existing methods
can also be extended to 3D localization microscopy
or 3D SIM reconstruction.48,51

Boyd et al. present a fast molecule localization
algorithm (DeepLoco) for both 2D and 3D SMLM
data.49 Instead of predicting high-resolution images
in Deep-STORM, DeepLoco maps a frame of raw
image directly to a collection of molecular locations.
The network is conducted based on a standard
CNN architecture and is trained with simulated
training data. During data generation, the authors
use laterally translated versions of an empirically
measured PSF and multiple z-stacks of di®erent
°uorophores, enabling the trained network to be
robust to aberrations such as dipole e®ects.52

Training the neural network takes several hours. A
kernel-based loss function is introduced to estimate
the squared error of l2 distance between the result-
ing rendered image and ground truth image in
continuous domain.

Wu et al. present a deep-learning-based approach
(Deep-Z) that refocuses a single 2D °uorescence
image onto 3D surfaces within the sample volume,
digitally increasing the depth-of-¯eld of the mi-
croscopy without any axial scanning.50 The archi-
tecture of Deep-Z is formed by a least square GAN,

and the network is trained using accurately mat-
ched pairs of °uorescence images acquired at dif-
ferent depths and their corresponding ground truth
labels captured at the target focal plane. On aver-
age, the training takes �70 h for �50 epochs. The
authors use digital propagation matrix (DPM) to
computationally correct for aberrations such as
sample drift, tilt and spherical aberrations. The
least square loss function, rather than cross entropy
loss, is adopted for the discriminator to overcome
the problem of vanishing gradients,53 and the loss
function of the generator combines the traditional
content loss (mean absolute error, MAE) and the
adversarial loss.

Nehme et al. present a deep neural network
(DeepSTORM3D) that is able to localize multiple
molecules in three dimensions in densely labeled
samples.51 It is not a simple extension of Deep-
STORM (2D). Instead, the approach jointly learns
the optimal PSF (encoding) and associated locali-
zation algorithm (decoding). Two di®erent CNN
architectures are used for localizing emitters and for
learning a phase mask, respectively, and the net-
works are trained solely on simulated data. The
recovery network training takes about 35 h with a
batch size of 4. The learned PSF has a smaller lat-
eral footprint than Tetrapod PSF, which is prefer-
able for minimizing overlap at high densities. The
loss function of DeepSTORM3D combines a term of
heatmap matching which measures the proximity of
the network prediction to the simulated ground
truth and a term of overlap measure that provides a
soft approximation of the true positive rate in the
output image.51

Table 1. Comparison of deep-learning-based methods in super-resolution °uorescence microscopy.

Methods Architecture Training data Loss function

Cross-modality13 GAN Experimental data MSEþ SSIM
BCE

Deep-STORM42 CNN Simulated data/Experimental data Fidelity termþ l1 regularization
DRL-STORM8 CNN Simulated data Fidelity termþ l1 regularization
ANNA-PALM22 GAN Simulated data/Experimental data MS-SSIMþ l1 loss

Consistency loss
BCE

DFGAN48 GAN Experimental data MSEþ SSIM
BCE

DL-SIM15 CNN Experimental data Pixel-wise loss
DeepLoco49 CNN Simulated data MSE
Deep-Z50 GAN Experimental data MAEþ adversarial loss

Least square loss
DeepSTORM3D51 CNN Simulated data Heatmap matching termþ overlap measurement term

Deep-learning-based methods for super-resolution °uorescence microscopy
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As listed in Table 1, our review covers a large
proportion of representative deep-learning-based
methods currently available in super-resolution
°uorescence microscopy.

Table 2 ¯rstly summarizes the inference time for
one frame of image with di®erent spatial sizes using
each method. Deep-STORM and DeepLoco are also
compared to conventional methods without using

deep learning, implying a speed-up of roughly �1–3
orders of magnitude. In order to show the perfor-
mance enhancement more informatively and more
clearly, we also exhibit the measurements of di®er-
ent metrics in Table 2. Here we only select repre-
sentative results to quantitatively evaluate the
overperformance of each method. For example,
peak signal-to-noise ratio (PSNR), normalized

Table 2. Comparison of performance and inference time.

Methods Inference time (image size) Metrics Performance of Conventional methods

Cross-modality13 0.4 s SNR ¼ 15:64 Confocal image
1024� 1024 pixels SNR ¼ 13:66

Deep-STORM42 0.011 s NMSE ¼ 37% FALCON54:
512� 512 pixels NMSE=61%

0.054 s Runtime: 0.338 s
1024� 1024 pixels 512� 512 pixels

0.868 s
1024� 1024 pixels

DRL-STORM8 0.005 s Temporal resolution: 0.5 s
30� 30 pixels

ANNA-PALM22 �1 s or less MS-SSIM ¼ 0:799 PALM image: MS-SSIM ¼ 0:47
2560� 2560 pixels

DFGAN48 less than 1 s NRMSE ¼ 0:0586
1024� 1024 pixels MS-SSIM ¼ 0:8680 �1 Richardson–Lucy algorithm:

Resolution ¼ 97 nm NRMSE ¼ 0:0755
MS-SSIM ¼ 0:7512
Resolution ¼ 243 nm

�2 SIM image:
NRMSE ¼ 0:0781
MS-SSIM ¼ 0:7832
Resolution ¼ 96 nm

�3 Hessian algorithm55:
NRMSE ¼ 0:0622
MS-SSIM ¼ 0:8584
Resolution ¼ 101 nm

DL-SIM15 Unknown PSNR ¼ 27:20� 4:21 Low light SIM image:
NRMSE ¼ 0:47� 0:15 PSNR ¼ 20:40� 2:59
SSIM ¼ 0:83� 0:12 NRMSE ¼ 0:99� 0:40

SSIM ¼ 0:43� 0:14

DeepLoco49 0.00005 s Jaccard ¼ 0:51� 0:16 Spliner56:
64� 64 pixels �RMSE (nm) = 16.12 � 6.56 Jaccard ¼ 0:37� 0:16

z RMSE ðnmÞ ¼ 27:30� 8:56 �RMSE ðnmÞ ¼ 14:89� 7:42
z RMSE ðnmÞ ¼ 27:83� 10:91

Runtime: 0.10101 s

Deep-Z50 �0.2 s SSIM ¼ 0:9590 Single °uorescence image:
512� 512 pixels RMSE ¼ 3:4021 SSIM ¼ 0:8207

�1 s SSIM ¼ 0:8207
1536� 1536 pixels RMSE ¼ 17:1474

DeepSTORM3D51 0.6 s Jaccard ¼ 0:9 Matching Pursuit approach57:
1250� 750 pixels Lateral RMSE ¼ 23:5 nm Jaccard ¼ 0:1

Axial RMSE ¼ 35 nm Lateral RMSE ¼ 70 nm
Axial RMSE ¼ 70 nm

J. Liao et al.
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root-mean-square error (NRMSE) and SSIM values
provided by DL-SIM are calculated for micro-
tubules, and SSIM and RMSE values reported by
Deep-Z are from 3D imaging of C. elegans neuron
nuclei at location of 5�m. More results and analysis
can be obtained in the corresponding references.
The comparison with the quality assessment of
conventional techniques further con¯rms the gain of
using deep learning.

4. Challenges and Potential Solutions

Despite its prominent successes, the applications of
deep learning also encounter challenges and limits.
This section discusses the key questions and po-
tential solutions.

4.1. E®ects of training data

The amount of training data and the quality of the
data are two main aspects a®ecting the network
performance. Insu±cient training data can easily
lead to over¯tting which means that the network
fails to generalize to unseen data. Inferior quality
training images a®ect the performance of the

network inference. This can be observed from Fig. 4.
Even though the input image [Fig. 4(a)] and STED
image [Fig. 4(d)] are captured with the same im-
aging modality, the output image [Fig. 4(c)] of the
network trained by using deconvolution of the
STED images are worse than the result [Fig. 4(b)] of
the network trained with high-quality SIM images.
This is related to the fact that the quality of the
information in the training examples has an e®ect
on the pixel-to-pixel transformation and the reso-
lution enhancement learned by the network.

For the problem of lack of data, data augmen-
tation techniques and transfer learning are com-
monly employed to expand the training dataset. It
is worth noting that some operations of data aug-
mentation may not add new information or pat-
terns to the training dataset. In addition, data
augmentation should be performed cautiously so as
to avoid changing the color or the texture that is
associated with the biomolecular information.27

Although di®erent transfer learning strategies can
be selected according to the distance of the tasks
and domains, it is better to pretrain the network on
large collections of high-quality °uorescence mi-
croscopy images than on ImageNet. As mentioned

Fig. 4. Comparison of the network output images by the model trained with di®erent training data. (a) A di®raction-limited
confocal microscopy image of the microtubules used as input to the network. (b) Super-resolved network inference image by a model
trained with high-quality SIM images. (c) Super-resolved network inference image by a model trained with the deconvolution of the
STED images. (d) A STED image of the same ¯eld of view. The white box regions are shown below at a magni¯ed scale. Scale bars
in the ¯rst row and second row are 3�m and 1�m, respectively.
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in the above section, su±cient training datasets can
be produced by simulations. Nevertheless, if we
expect the models trained with simulated training
data to achieve better performance, then the deg-
radation process in simulation should be as com-
plicated and accurate as that in real applications.58

To obtain high-quality real images for training, it
is necessary to design and perform the experiments
carefully. Furthermore, the images acquired from
di®erent imaging modalities or under di®erent
conditions should be taken into account to improve
the generalization of the approach. This poses a

Fig. 5. ANNA-PALM reconstructions and error maps for di®erent mismatch levels between training and input data.22 The ¯rst
column (a, d, g, j) shows the input images that have di®erent mismatch levels with the training data. The second column (b, e, h, k)
shows the corresponding ANNA-PALM network outputs. The third column (c, f, i, l) shows the error maps. The black box encloses
the same area as in (a–c). It is clear that the reconstructed images are inferior and the error map values increase for larger mismatch
between training data and input data.
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challenge to the devices and the skills of the tech-
nicians. The creation and facilitation of access to
large databases of °uorescence microscopic data is
always welcomed.

In recent years, meta-learning is proposed to
train the network with small amount of simulated
training data, enabling the optimal model to gen-
eralize to new tasks not seen in the training set.59

Compared to conventional deep learning that
heavily relies on abundant training examples, meta-
learning is closer to human visual systems that
recognize new objects after learning from a limited
amount of labeled instances. Another remarkable
advantage is that meta-learning can extract and
propagate transferable knowledge from a collection
of tasks to prevent over¯tting and improve gener-
alization.60 Meta-learning-based image reconstruc-
tion or resolution enhancement of °uorescence
microscopic images is still under-explored and
deserves further investigation, mitigating the e®ect
of the training data.

4.2. Issue of reliability

The reliability of the results when applying deep
learning in °uorescence microscopy has been ques-
tioned. Fake structures and deceptive artifacts may
be generated by deep-learning-based methods,
which appear plausible and can mislead the subse-
quent research of biological processes. Some net-
work architectures, such as GANs, are particularly
susceptible to hallucinate details.12 Consequently, it
is necessary to alleviate this problem and produce
reliable images in practical applications of deep
learning to °uorescence microscopy. Take ANNA-
PALM22 as an example, it improves the reliability
of reconstruction results by introducing error maps
through the measurement of consistency. The e®ect
of the mismatch between the training data and
input data on the network reconstructions is shown
in Fig. 5. The network is trained only once and then
is applied to the input images [Figs. 5(a), 5(d), 5(g)
and 5(j)] that have di®erent mismatch levels with
the training data. The corresponding network out-
puts [Figs. 5(b), 5(e), 5(h) and 5(k)] and error maps
[Figs. 5(c), 5(f), 5(i) and 5(l)] of the same area
enclosed by black boxes increase for higher mis-
match levels, revealing larger inconsistency between
the reconstructed super-resolution image and the
wide-¯eld image. The error maps or disagreement is
helpful for the researchers to determine whether the

results are reliable and when the model needs to be
retrained with new training data.

Interpreting the \black-box" models is intricate
because deep neural networks usually contain
complex multilayers and nonlinear interaction
components. Fortunately, some studies have inves-
tigated or developed the techniques to facilitate the
interpretation of the results. For example, Maaten
et al. propose a variation of stochastic neighbor
embedding (t-SNE), which can visualize the rela-
tionships between data by mapping deep network
representations to low-dimensional spaces.61

Simonyan et al. explore which parts of the input
image are essential for prediction of the output.62

Zeiler et al. analyze the function of intermediate
layers to visualize and understand the convolutional
networks.63 Lakshminarayanan et al. present a
simple and high quality predictive uncertainty es-
timation using deep ensembles.64 These ideas are
suggested to be adapted to °uorescence imaging to
quantify and improve the reliability of the results,
as has been demonstrated in content-aware image
restoration (CARE) networks.24 CARE provides
per-pixel con¯dence intervals and ensemble dis-
agreement scores that can identify image regions
where the errors occur.

5. Conclusions

As an advanced data analysis method, deep learn-
ing gives a much needed boost to the super-resolu-
tion °uorescence microscopy. The representative
applications in this ¯eld are reviewed in this work.
By constructing di®erent network architectures,
using simulated or experimental training data and
devising various loss functions, current applications
take advantage of the computational advances of
deep learning to improve the resolution of °uores-
cence images or to reconstruct super-resolution
images with fewer raw data. Although deep learning
is still in its infancy for applications in °uorescence
microscopy and requires overcoming the limits and
hurdles, robust and reliable deep learning methods
hold many promises for this ¯eld, especially with
increasing demand for highly accurate and fast live-
cell imaging.
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